Stoneley Wave Propagation in Heterogeneous Permeable Porous Formations
نویسندگان
چکیده
The propagation of borehole Stoneley waves is strongly correlated with permeability of the formation. Previous studies primarily focused on the situation where the permeability is homogeneously distributed in the formation. In many in-situ situations, however, the permeability distribution of the formation is heterogeneous, due to effects such as a damaged zone around the borehole, random variation of the formation permeability, and layering, etc. This study investigates the effects of formation permeability heterogeneity on Stoneley wave propagation. Using the theory of dynamic permeability and a finite difference technique in cylindrical coordinates, dynamic pore fluid flow in an arbitrarily heterogeneous porous medium surrounding the borehole is modeled. The effects of the flow on the borehole Stoneley waves are calculated. The calculations were performed on various types of permeability heterogeneities. For a formation having random permeability variation with various heterogeneity scale lengths (smaller than the scale of the borehole), the Stoneley wave attenuation and dispersion are only slightly higher than those calculated with a constant permeability (mean value of the random distributions). For a formation with permeability linearly increasing or decreasing away from the borehole, the Stoneley wave behaviors are also similar to those calculated with a constant permeability. Significant effects are found for a damaged zone case where the zone has much higher permeability than the virgin formation. The attenuation exhibits a peak and the Stoneley wave velocity is significantly decreased in the frequency range from 0 to 3 kHz. These features, if measured from the data, can be used as a diagnostic of the borehole condition.
منابع مشابه
Stoneley Wave Propagation across Borehole Permeability Heterogeneities
An important application of borehole acoustic logging is the determination of formation permeability using Stoneley waves. Heterogeneous permeable structures, such as fractures, sand-shale sequences, etc., are commonly encountered in acoustic logging. The purpose of this study is to investigate the effects of the permeability heterogeneities on the borehole Stoneley wave propagation, We have st...
متن کاملEffects of a Logging Tool on the Stoneley Wave Propagation in Elastic and Porous Formations
A detailed study is carried out to investigate the effects of an acoustic logging tool on the propagation characteristics of Stoneley waves in both elastic and porous formations. In an elastic formation, the presence of the tool in the borehole reduces the Stoneley velocity and enhances the Stoneley wave excitation. When intrinsic attenuation due to formation and bore fluid anelasticity is pres...
متن کاملBorehole Stoneley Wave Propagation across Heterogeneous and Permeable Structures
This study investigates the propagation of borehole Stoneley waves across heterogeneous and permeable structures. By modeling the structure as a zone intersecting the borehole, a simple one-dimensional theory is formulated to treat the interaction of the Stoneley wave with the structure. This is possible because the Stoneley wave is a guided wave, with no geometric spreading as it propagates al...
متن کاملBorehole Stoneley Wave Propagation across Permeable Structures: Comparison between Theory
The attenuation of borehole Stoneley waves across a permeable structure (e.g., fractures or fracture zone) is correlated with the permeability of the structure. Using a simplified Biot theory, the structure can be modelled as a permeable porous layer intersecting the borehole. In order to study the effect of such a structure on Stoneley waves and to evaluate the theoretical model, we performed ...
متن کاملDYNAMIC PERMEABILITY AND BOREHOLE STONELEY WAVES: A SIMPLIFIED BlOT-ROSENBAUM MODEL
Stoneley waves in permeable boreholes are diagnostic of formation permeability because their propagation is affected by the dynamic fluid flow at the borehole wall. We characterize this flow using the concept of dynamic permeability. We examined the applicability of the dynamic permeability to porous media by applying it to a single fracture case and found that it agrees excellently with the fr...
متن کامل